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PERTURBATION OF THE GEOMAGNETIC FIELD -

A SPHERICAL HARMONIC EXPANSiON

James I, Midgley

Southwest Center for Advanced Studies
P.O. Box 8478, Dallas 5, Texas

ABSTRACT /5527

The spherical harmonic expansion of the perturbation of the geo-
magnetic field is calculated using the magnetopause shape and current
system determined previously by the moment technique. The expansion

coefficients are compared to those determined by another method by liead.

Introduction

B

The work reported in this paper is a direct outgrowth of the

calculations of Midgley and Davis (1963) and that paper (hereafter

referred to as I) must be read first by anyone who desires to follow
the detailed calculations or estimate the accuracy to be expected of
the result.

In general, paper I obtaiﬂs a numerical solution (by a method
involving no approximation in the basic equations) to the problem of
a dipole normal to a cold, field-free plasma wind., A bounding surface
is determined for the field, and the surface currents which properly
balance the plasma pressure at each point of the surface and approximate-
ly cancel the field everywhere outside the surface are calculated. The
magnetic field of these surface currents is calculated at a number of

discrete points and field plots made from these values.
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It has been brought to the author's attention by Dr. Gilbert
Mead that the more useful and traditional way of specifying the
geomagnetic field is by means of the coefficients in a spherical
harmonic expansion of its scalar potential. These heve been obtained

by a small modification of the programs used in paper I.

Calculation of the Expansion Coefficients

The scalar potential (defined so that B = -V¢) of the part of
the geomagnetic field due to the surface currents may be expressed as:
s=rJ 3§ %égmﬁim. (1)

n=1 m=0 p=0

Following the convention of paper I, RN is the unit of length (chosen

as the distance from the neutral point to the earth-sun axis) and JO is
the unit of current-per-unit-width (chosen as (NOM,CU(Q)/TT)U2 where NOMt

is the density and Uo the velocity of the wind), Thus the coefficients
§§m are dimensionless constants and the 5§m are dimensionless functions

of (r,6,¢). The ﬁim’ however, are the solutions of Laplace's equation

which vanish at the origin:
¢

=p _ _ngh _ m
Dnm = r Pn(cos 8) cos (m@ p;) (2)

while the me of paper I (equation 2.4) were the ones vanishing at infinity.
n
Further, in deference to accepted convention, the Schmidt normalized

-
Legendre polynomials (denoted Pn here) will be used rather than the

P: of (2.4). They are defined (Chapman and Bartels, 1940, p. 639) as
1/2 P:. The coordinate system

-mM .
follows: P = [(2- 8,5) (n-m)!/(n+m)!]
here has its z axis pointing toward the sun and its y axis along the

dipole. As before, it is actually the vector potential



O =D -p -p
A=rJ Y ) 1 X e +¥ e +7 ¢ |D (3)
N'o n=1 m=0 p:O X nm~y nm~2 nm

that is most easily calculated, and so the relationships between the X, ?,

Z and the S must be derived., These are:

-p -1-p 1/2 -1-p -p
ST = (2p-1)2 - (148 )(n-mt+l)/(n+m 2p-1)X -Y 1<
nm (2p-1) nm [ ml ( /! 2] [( p-1) nm-1 nm—l] ="
/2 (4)
—p _ :-l-p l _l-p "P
sToo= -2p)2= - -0.56 +m+ - - + Y 0 <
om (1-2p) o [(1-0.5 mo)(n m+1)/(n-m)] [(2p l)Xnm+l nm+l] <m
which, of course, differ from (2.8) because ﬁim differs from DF .
nm
The ?, Y, and 7 are given by (2.12) with some minor changes.
=D . r =n T -n-1
Xnm = fS JX(”)PH(COS ) cos (m¢-p7) r ds , etc. (5)

Since these changes have no effect on the symmetry about the @#=0 or ¢=%

planes, equation (4,1) still applies, and the only non-zero S are:

3= Eo [(1+8_ )(n-m+1)/(n+ )11/2 [§° 7 ] =1,3,5
nm _ nm m1’ " e nm-1 nm-1 I
. (6)
-1 =0 /2 - =1
snm =L - [(n+m+1)/(n-m)] [Xnm+l tYo m=1, 3, 5,..n-1

The first relation is used (because it applies when m=n) to obtain integral
-1

expressions for the Snm analogous to (4,6). These integrals were evaluated

for the surface calculated in I, giving the values shown in Table 1.

Transformation to HMagnetic Coordinates

The natural coordinate system for the above calculations has its
polar axis along the earth sun linej; but the most useful coordinate
system for the results has its polar axis along the earth's dipole axis.
The coordinates in this new system will be denoted by (r, 6', @') where
0' is measured from the dipole axis (the y axis in the old (r, 6, #) system)

and @' is measured from the midnight meridian. Denote the scalar potential

| A

jA
=]

o
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expansion coefficients appropriate to this new coordinate system by

TP so that
nk

[« n 1
¢$=RrRJ 1 § ] TBIE (rpe',m . (7)
E ° n=1 k=0 p=0 nknk 7

In order to express the T° as functions of the §p m? it is necessary to

nk

be able to express the D (r ®,#), m=1,3,...n, as linear combinations of
the ng(r,e,ﬂ ).

1
(P 6,8) = | 2 Miiﬁik (r,06', 8') . m=1,3,...0n (8)
p=0 k=0 T

. : e
The transformation matrices H b

Ik can be derived from the equations for

the transformation of spherical harmonics (see Rose (1957) equations

4,28a, 4,12, 4,13, and III.20)

P
mk

:spo(l_(_l)n+k)(1/2)n+113m+2k-l

(9)
T 1* [(2-8,0) (nem) t (nm) t(nek) 1 (k) 1] 2

s=t (s+k-m) ! (n-k-s)(n+tm-s)!s!

where t=m-k unless m<k in which case t=0j and 6po=0 unless p=0 in
which case 8oo=1. The numerical values of some of these matrices are
given in Table 2, Inserting equation (8) into equation (1) and comparing

with (7) we get

™°, =

ynozl
nk . (m odd only) (10)

\'nk nm
P

This is the equation used in deriving Table 3 from Table 1. A The gradient

urv1z

of (7) was calculated (using the coefficients in Table 3) at those points

in the equatorial plane where the field had been calculated directly in
paper I. It was found that the fields calculated by these two different
methods agreed to better than 0.1 per cent at all points within 0.4R_ of the

N

origin., At points within about 30° of the earth-sun line agreement was



it
better than 0.4 per cent out to 0.9 R, butpjwas not as gcod toward the

tail of the cavity. There is about a 2 per cent discrepancy in the values

at 0.7R, in the night hemisphere, rising to 8 per cent at R..

The scalar potential of the field produced by the surface currents
b I J

has also been determined by liead (1963) by a method involving higher

order corrections to Deard's solution. Followins Chapran & Zartels (1340).

he expresses the expansion of the scalar notential in the form

o Ryn =m
= ¢ s (=)' s ! S.'
I R P (cos 0') cos np (11)
n=1 m=0

3

where a is the radius of the earth at the equator. Equating (7) and

(11) and using (5.3) from I with Sil:—7'0030 and ro=l.0166RN/a gives the
. . o m
following relationship between Tnm and £y
" Se 1.0166)n+2 o (12)
“n  7.003 r “nm

where Be is the magnitude of the earth's dipole field at the equator and
r 1is the distance to the subsolar point in units of earth radii, Using
this formula, the results in Table 3 have been expressed in ead's notation
(choosing B,o= .31 rauss) and are compared with ilead's vesults in Table Uu,

It is a moot question as to whether the zero temperature solution
or the solution with a superimposed 1% isotropic pressure is rore reaningful
phvsically, because the former doesn't close at all on the night side and
the latter closes toc abruptly. Confining our attention, however, to the
discrepancy in the results for the two zero-temperature solutions, it appears

that it can be explained almost entirely in terms of the differences in

the surface shapes determined by the two methods., For instance, defining

for llead's surface y = 1.08, while for the author's surface

r /R
Y o/

n?

1.0166, If llead's value were used in (12) the last line of Table 4 would

<
"



read: -0,240 0,119 =-0,014 -0,020, It is easy to see qualitatively why y
should affect these cocfficients the way it does. The dipole moment of the
surface is roughly proportional to ri RNJO = erO/Y. Since this must equal
the earth's dipole moment, the field of the earth's dipole at the subsolar
point must be proportional to JO/Y. The total field there must be HNJO,

50 the field there due to the surface currents (;QWJO(Q—I/Y)) must increase
with increasing 7.

There is no clearcut way to decide which of the two shapes (and therefore
which set of coefficients) is more accurate, but in all fairness there is
one piece of evidence which favors Mead's result. The calculation of (6.3)
in paper I indicates that 53% of the field just inside the subsolar point is
contributed by the earth's dipole, while for llead's solution the corresponding
result is probably about 47%. With a plane or spherical boundary, the exact
percentages are 50% and 33%. A cylindrical box with a centered dipole can
give a result greater than 50%, but it must have a length to diameter
ratio of almost three in order to do so,

In conclusion, it is gratifying that the two sets of coefficients
agree as well as they do, considering their completely different
derivations, It is reasonable to say that the discrepancies between them
are probably smaller than the errors due to the oversimplification of the
original model.,
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Table 1.

Calculated Expansion Coefficients §i
n= 1 2 3 4 5 6
m =1 |-4.3080 -1.9373 -.1146 .288 .081 -.087
m=3 .358 2U7 .0001 -.107
m=5 .089 -.067
Table 2. The Transformation latrices Mﬁz
n=l |n=2 n =3 n 4 n =>5 n =26
= 0 1 0 2 1 3 0 2 L 1 3
11 |-1 -P P J’__sa -(_7_ J’ao -J’ 56 [ u2 -J'loo \[’90 -J’es
3 8 16 16 128 128 Jl28 256 256 256
3 Bl 2R [ R e
8 8 16 16 128 _ | 128 128 256 256 256
5 \IF 63 /’60 5 —‘[ 66 -J’lss -J’zs
128 || 128 1128 256 256 256
Table 3. Transformed Expansion Coefficients Tsk
n= 1 2 3 b 5 i 6
= 0 |-4,3080 -,213 .102
=1 1.9373 .379 152
= 2 -.310 .007
= 3 -.005 .005
= .064
=5 -.021




Table 4, Comparison of liead's Expansion Coefficients with

the Corresponding Tgm (See equation 12)

r3wo rupl P5FO rSFQ

o1 o2 03 0" 3
liead - 1% isotropic pressure -0.277 0.108 -0,012 -0.024
ilead - zero temperature -0.2u3 0.121 -0.014 -0.023
liidgley - zero temperature -0,200 0.082 -0,010 -0,015




